Regularity theory for tangent-point energies: The non-degenerate sub-critical case
نویسندگان
چکیده
منابع مشابه
Monodromy problem for the degenerate critical points
For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملmonodromy problem for the degenerate critical points
for the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. when the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. in this paper we will consider the polynomial planar vector fields ...
متن کاملSearch for the QCD critical point at SPS energies
Lattice QCD calculations locate the QCD critical point at energies accessible at the CERN Super Proton Synchrotron (SPS). We present average transverse momentum and multiplicity fluctuations , as well as baryon and anti-baryon transverse mass spectra which are expected to be sensitive to effects of the critical point. The future CP search strategy of the NA61/SHINE experiment at the SPS is also...
متن کاملRegularity Results for Very Degenerate Elliptic Equations
We consider a family of elliptic equations introduced in the context of traffic congestion. They have the form ∇·(∇F(∇u)) = f , where F is a convex function which vanishes inside some convex set and is elliptic outside. Under some natural assumptions on F and f , we prove that the function ∇F(∇u) is continuous in any dimension, extending a previous result valid only in dimension 2 [14]. Résumé....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Calculus of Variations
سال: 2015
ISSN: 1864-8258,1864-8266
DOI: 10.1515/acv-2013-0020